Aerobiological Pollen Deposition and Transport of Fraxinus excelsior L. at a Small Spatial Scale

Author:

Eisen Anna-KatharinaORCID,Fussi BarbaraORCID,Šikoparija BrankoORCID,Jochner-Oette Susanne

Abstract

The ongoing fragmentation of ash populations due to ash dieback requires an effective gene flow between individuals; thus, investigations on ash pollen transport are essential. In this study, comprehensive aerobiological field experiments at two seed plantations in Baden-Württemberg were conducted in 2019 and 2020 in order to study the influence of phenology and meteorology (especially wind) on pollen transport using self-constructed gravimetric pollen traps located 1.5 and 5 m a.g.l. Our main objectives were to investigate the local scale dispersion of ash pollen and to evaluate the recommended distance (i.e., 400 m) from seed plantations to other ash trees according to the German Forest Reproduction Act. Our results showed a link between pollen transport and meteorology, the onset of phenological development, and the topography of the plantation. The plantation at Schorndorf was characterized by a slope and associated cold air flows, suggesting that this could be a factor contributing to higher pollen levels at the downslope traps. In addition, in many cases, the cardinal direction associated with the highest pollen impaction was also identical with the predominant wind direction. Analyzing pollen data for single traps in detail, we found that the highest total pollen catch (31%) was measured outside the plantations in 2019, a year with very low flower development. In contrast, most pollen (33%) was caught within the plantation in 2020, which presented a much stronger pollen year than 2019 (with a factor of 11 regarding total sums). This indicates, in the lower pollen year, a potential higher contribution of trees from outside the plantation, and thus it can be recommended that seed harvesting of ash trees in the plantations should preferentially take place in full mast years. Interestingly, the total pollen deposition in Emmendingen at 5 m height showed little difference compared to the traps at 1.5 m height, but there was a large temporal difference pointing to vertical variations in pollen availability. In general, we found that ash pollen was transported for a larger distance than 400 m, but the amount of pollen decreased substantially with increasing distance. At a distance of 200 m, there was already approx. 50% less pollen captured from the air. However, even at a distance of 500 m, more than 10% of the pollen was still captured. In order to ensure cross-pollination of healthy ash trees, the distance of ash individuals or stands should not be too large, and there should be no spatial separation (e.g., by conifer stands).

Funder

Bavarian State Ministry of Food, Agriculture and Forestry

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3