A Simple New Method for Calculating Precipitation Scavenging Effect on Particulate Matter: Based on Five-Year Data in Eastern China

Author:

Zhou Bin,Liu DuanyangORCID,Yan Wenlian

Abstract

A “rain-only” method is proposed to find out the precipitation effect on particle aerosol removal from the atmosphere, and this method is not only unique and novel but also very simple and can be easily adapted to predict aerosol particle scavenging over any region across the world irrespective of the topographical, orographical, and climatic features. By using this simple method, the influences of the rain intensity and particle mass concentration on the aerosol scavenging efficiency are discussed. The results show that a higher concentration, a higher rain intensity, and a larger particle size lead to a higher scavenging efficiency and a higher scavenging rate. The greater the rain intensity, the higher the scavenging efficiency. The scavenging efficiency of PM10 by precipitation is better than that of PM2.5. When the rain intensity is 10 mm h−1, the scavenging efficiency of PM2.5 reaches 5.1 μg m−3 h−1, and the scavenging efficiency of PM10 reaches 15.8 μg m−3 h−1. The scavenging rate increases faster when accumulative precipitation is below 15 mm. The scavenging rate has obvious monthly variation, and the scavenging rate of coastal areas is less than that of inland Jiangsu. The growth of the particle mass concentration after precipitation is divided into two stages: the rapid growth stage after precipitation ends, and the slow growth stage about 24 h after precipitation ends.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3