What Factors Dominate the Change of PM2.5 in the World from 2000 to 2019? A Study from Multi-Source Data

Author:

Xu Xiankang12,Shi Kaifang12,Huang Zhongyu12,Shen Jingwei12ORCID

Affiliation:

1. Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China

Abstract

As the threat to human life and health from fine particulate matter (PM2.5) increases globally, the life and health problems caused by environmental pollution are also of increasing concern. Understanding past trends in PM2.5 and exploring the drivers of PM2.5 are important tools for addressing the life-threatening health problems caused by PM2.5. In this study, we calculated the change in annual average global PM2.5 concentrations from 2000 to 2020 using the Theil–Sen median trend analysis method and reveal spatial and temporal trends in PM2.5 concentrations over twenty-one years. The qualitative and quantitative effects of different drivers on PM2.5 concentrations in 2020 were explored from natural and socioeconomic perspectives using a multi-scale geographically weighted regression model. The results show that there is significant spatial heterogeneity in trends in PM2.5 concentration, with significant decreases in PM2.5 concentrations mainly in developed regions, such as the United States, Canada, Japan and the European Union countries, and conversely, significant increases in PM2.5 in developing regions, such as Africa, the Middle East and India. In addition, in regions with more advanced science and technology and urban management, PM2.5 concentrations are more evenly influenced by various factors, with a more negative influence. In contrast, regions at the rapid development stage usually continue their economic development at the cost of the environment, and under a high intensity of human activity. Increased temperature is known as the most important factor for the increase in PM2.5 concentration, while an increase in NDVI can play an important role in the reduction in PM2.5 concentration. This suggests that countries can achieve good air quality goals by setting a reasonable development path.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3