Abstract
More than seven years of remote sensing data with high spatial and temporal resolution were investigated in this study. The 20-min moving averaged wind profiles form the acoustic sounding with Scintec MFAS sodar were derived every 10 min. The profiles covered from 30 to 600 m height with vertical resolution of 10 m. The wind speed probability and the Weibull distribution parameters were calculated by the maximum likelihood method at each level and then the profiles of the Weibull scale and shape parameters were analyzed. Diurnal wind speed at heights above 200 m has shown a well-expressed increase in the averaged values during the night hours, while during the day lower wind speeds were observed. The reversal height was explored from spatially and temporally homogenized diurnal wind speed data with applied quadratic functions for better interpretation of the results. In addition, analyses by type of air masses (land or sea air mass) were performed. One of the outcomes of the study was assessment of the internal boundary layer height, which was estimated to 50–80 m at the location of the sodar. The obtained information forms the basis for climatological insights on the vertical structure of the coastal boundary layer and is unique long-term data set important not only for Bulgaria but for coastal meteorology in general.
Funder
National Science Fund of Bulgaria
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference42 articles.
1. Integrated Ground-Based Remote-Sensing Stations for Atmospheric Profiling;Engelbart,2009
2. Integrated Ground-Based Observing Systems
3. Surface-Based Remote Sensing of the Atmospheric Boundary Layer
4. Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark
5. COST Action ES0702 Final Report: European Ground-Based Observations of Essential Variables for Climate and Operational Meteorology;Illingworth,2013
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献