Wind Speed Profile Statistics from Acoustic Soundings at a Black Sea Coastal Site

Author:

Barantiev DamyanORCID,Batchvarova EkaterinaORCID

Abstract

More than seven years of remote sensing data with high spatial and temporal resolution were investigated in this study. The 20-min moving averaged wind profiles form the acoustic sounding with Scintec MFAS sodar were derived every 10 min. The profiles covered from 30 to 600 m height with vertical resolution of 10 m. The wind speed probability and the Weibull distribution parameters were calculated by the maximum likelihood method at each level and then the profiles of the Weibull scale and shape parameters were analyzed. Diurnal wind speed at heights above 200 m has shown a well-expressed increase in the averaged values during the night hours, while during the day lower wind speeds were observed. The reversal height was explored from spatially and temporally homogenized diurnal wind speed data with applied quadratic functions for better interpretation of the results. In addition, analyses by type of air masses (land or sea air mass) were performed. One of the outcomes of the study was assessment of the internal boundary layer height, which was estimated to 50–80 m at the location of the sodar. The obtained information forms the basis for climatological insights on the vertical structure of the coastal boundary layer and is unique long-term data set important not only for Bulgaria but for coastal meteorology in general.

Funder

National Science Fund of Bulgaria

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference42 articles.

1. Integrated Ground-Based Remote-Sensing Stations for Atmospheric Profiling;Engelbart,2009

2. Integrated Ground-Based Observing Systems

3. Surface-Based Remote Sensing of the Atmospheric Boundary Layer

4. Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark

5. COST Action ES0702 Final Report: European Ground-Based Observations of Essential Variables for Climate and Operational Meteorology;Illingworth,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3