Visibility Prediction over South Korea Based on Random Forest

Author:

Kim Bu-YoORCID,Cha Joo Wan,Chang Ki-Ho,Lee Chulkyu

Abstract

In this study, the visibility of South Korea was predicted (VISRF) using a random forest (RF) model based on ground observation data from the Automated Synoptic Observing System (ASOS) and air pollutant data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) model. Visibility was predicted and evaluated using a training set for the period 2017–2018 and a test set for 2019. VISRF results were compared and analyzed using visibility data from the ASOS (VISASOS) and the Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (VISLDAPS) operated by the Korea Meteorological Administration (KMA). Bias, root mean square error (RMSE), and correlation coefficients (R) for the VISASOS and VISLDAPS datasets were 3.67 km, 6.12 km, and 0.36, respectively, compared to 0.14 km, 2.84 km, and 0.81, respectively, for the VISASOS and VISRF datasets. Based on these comparisons, the applied RF model offers significantly better predictive performance and more accurate visibility data (VISRF) than the currently available VISLDAPS outputs. This modeling approach can be implemented by authorities to accurately estimate visibility and thereby reduce accidents, risks to public health, and economic losses, as well as inform on urban development policies and environmental regulations.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3