Application of a Novel Hybrid Wavelet-ANFIS/Fuzzy C-Means Clustering Model to Predict Groundwater Fluctuations

Author:

Jafari Mohammad Mahdi,Ojaghlou Hassan,Zare MohammadORCID,Schumann Guy Jean-Pierre

Abstract

In order to optimize the management of groundwater resources, accurate estimates of groundwater level (GWL) fluctuations are required. In recent years, the use of artificial intelligence methods based on data mining theory has increasingly attracted attention. The goal of this research is to evaluate and compare the performance of adaptive network-based fuzzy inference system (ANFIS) and Wavelet-ANFIS models based on FCM for simulation/prediction of monthly GWL in the Maragheh plain in northwestern Iran. A 22-year dataset (1996–2018) including hydrological parameters such as monthly precipitation (P) and GWL from 25 observation wells was used as models input data. To improve the prediction accuracy of hybrid Wavelet-ANFIS model, different mother wavelets and different numbers of clusters and decomposition levels were investigated. The new hybrid model with Sym4-mother wavelet, two clusters and a decomposition level equal to 3 showed the best performance. The maximum values of R2 in the training and testing phases were 0.997 and 0.994, respectively, and the best RMSE values were 0.05 and 0.08 m, respectively. By comparing the results of the ANFIS and hybrid Wavelet-ANFIS models, it can be deduced that a hybrid model is an acceptable method in modeling of GWL because it employs both the wavelet transform and FCM clustering technique.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference58 articles.

1. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach

2. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology

3. Design of a real-time groundwater level monitoring network and portrayal of hydrologic data in Southern Florida;Prinos,2002

4. Forecasting the runoff using least square support vector machine;Lijun;Tianjin Teach. Comm.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3