Abstract
In order to optimize the management of groundwater resources, accurate estimates of groundwater level (GWL) fluctuations are required. In recent years, the use of artificial intelligence methods based on data mining theory has increasingly attracted attention. The goal of this research is to evaluate and compare the performance of adaptive network-based fuzzy inference system (ANFIS) and Wavelet-ANFIS models based on FCM for simulation/prediction of monthly GWL in the Maragheh plain in northwestern Iran. A 22-year dataset (1996–2018) including hydrological parameters such as monthly precipitation (P) and GWL from 25 observation wells was used as models input data. To improve the prediction accuracy of hybrid Wavelet-ANFIS model, different mother wavelets and different numbers of clusters and decomposition levels were investigated. The new hybrid model with Sym4-mother wavelet, two clusters and a decomposition level equal to 3 showed the best performance. The maximum values of R2 in the training and testing phases were 0.997 and 0.994, respectively, and the best RMSE values were 0.05 and 0.08 m, respectively. By comparing the results of the ANFIS and hybrid Wavelet-ANFIS models, it can be deduced that a hybrid model is an acceptable method in modeling of GWL because it employs both the wavelet transform and FCM clustering technique.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference58 articles.
1. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach
2. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology
3. Design of a real-time groundwater level monitoring network and portrayal of hydrologic data in Southern Florida;Prinos,2002
4. Forecasting the runoff using least square support vector machine;Lijun;Tianjin Teach. Comm.,2007
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献