Improving Forecasting Accuracy of Multi-Scale Groundwater Level Fluctuations Using a Heterogeneous Ensemble of Machine Learning Algorithms

Author:

Roy Dilip Kumar1ORCID,Munmun Tasnia Hossain1,Paul Chitra Rani1,Haque Mohamed Panjarul1,Al-Ansari Nadhir2ORCID,Mattar Mohamed A.3ORCID

Affiliation:

1. Irrigation and Water Management Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh

2. Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden

3. Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

Accurate groundwater level (GWL) forecasts are crucial for the efficient utilization, strategic long-term planning, and sustainable management of finite groundwater resources. These resources have a substantial impact on decisions related to irrigation planning, crop selection, and water supply. This study evaluates data-driven models using different machine learning algorithms to forecast GWL fluctuations for one, two, and three weeks ahead in Bangladesh’s Godagari upazila. To address the accuracy limitations inherent in individual forecasting models, a Bayesian model averaging (BMA)-based heterogeneous ensemble of forecasting models was proposed. The dataset encompasses 1807 weekly GWL readings (February 1984 to September 2018) from four wells, divided into training (70%), validation (15%), and testing (15%) subsets. Both standalone models and ensembles employed a Minimum Redundancy Maximum Relevance (MRMR) algorithm to select the most influential lag times among candidate GWL lags up to 15 weeks. Statistical metrics and visual aids were used to evaluate the standalone and ensemble GWL forecasts. The results consistently favor the heterogeneous BMA ensemble, excelling over standalone models for multi-step ahead forecasts across time horizons. For instance, at GT8134017, the BMA approach yielded values like R (0.93), NRMSE (0.09), MAE (0.50 m), IOA (0.96), NS (0.87), and a-20 index (0.94) for one-week-ahead forecasts. Despite a slight decline in performance with an increasing forecast horizon, evaluation indices confirmed the superior BMA ensemble performance. This ensemble also outperformed standalone models for other observation wells. Thus, the BMA-based heterogeneous ensemble emerges as a promising strategy to bolster multi-step ahead GWL forecasts within this area and beyond.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3