Modeling Dynamic Processes in the Black Sea Pelagic Habitat—Causal Connections between Abiotic and Biotic Factors in Two Climate Change Scenarios

Author:

Lazar Luminita1ORCID,Boicenco Laura2ORCID,Pantea Elena3ORCID,Timofte Florin2ORCID,Vlas Oana3ORCID,Bișinicu Elena3ORCID

Affiliation:

1. Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development “Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania

2. National Institute for Marine Research and Development “Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania

3. Ecology and Marine Biology Department, National Institute for Marine Research and Development “Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania

Abstract

The paper contributes to the Sustainable Development Goals (SDGs) targeting Life Below Water by introducing user-friendly modeling approaches. It delves into the impact of abiotic factors on the first two trophic levels within the marine ecosystem, both naturally and due to human influence. Specifically, the study examines the connections between environmental parameters (e.g., temperature, salinity, nutrients) and plankton along the Romanian Black Sea coast during the warm season over a decade. The research develops models to forecast zooplankton proliferation using machine learning (ML) algorithms and gathered data. Water temperature significantly affects copepods and “other groups” of zooplankton densities during the warm season. Conversely, no discernible impact is observed on dinoflagellate Noctiluca scintillans blooms. Salinity fluctuations notably influence typical phytoplankton proliferation, with phosphate concentrations primarily driving widespread blooms. The study explores two scenarios for forecasting zooplankton growth: Business as Usual, predicting modest increases in temperature, salinity, and constant nutrient levels, and the Mild scenario, projecting substantial temperature and salinity increases alongside significant nutrient decrease by 2042. The findings underscore high densities of Noctiluca scintillans under both scenarios, particularly pronounced in the second scenario, surpassing the first by around 70%. These findings, indicative of a eutrophic ecosystem, underscore the potential implications of altered abiotic factors on ecosystem health, aligning with SDGs focused on Life Below Water.

Funder

Ministerul Cercetării și Inovării

European Union under the Horizon Europe program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3