The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric CH4 Variations around Background Concentration

Author:

Rivera Martinez RodrigoORCID,Santaren Diego,Laurent OlivierORCID,Cropley Ford,Mallet CécileORCID,Ramonet MichelORCID,Caldow ChristopherORCID,Rivier Leonard,Broquet Gregoire,Bouchet Caroline,Juery CatherineORCID,Ciais PhilippeORCID

Abstract

Continued developments in instrumentation and modeling have driven progress in monitoring methane (CH4) emissions at a range of spatial scales. The sites that emit CH4 such as landfills, oil and gas extraction or storage infrastructure, intensive livestock farms account for a large share of global emissions, and need to be monitored on a continuous basis to verify the effectiveness of reductions policies. Low cost sensors are valuable to monitor methane (CH4) around such facilities because they can be deployed in a large number to sample atmospheric plumes and retrieve emission rates using dispersion models. Here we present two tests of three different versions of Figaro® TGS tin-oxide sensors for estimating CH4 concentrations variations, at levels similar to current atmospheric values, with a sought accuracy of 0.1 to 0.2 ppm. In the first test, we characterize the variation of the resistance of the tin-oxide semi-conducting sensors to controlled levels of CH4, H2O and CO in the laboratory, to analyze cross-sensitivities. In the second test, we reconstruct observed CH4 variations in a room, that ranged from 1.9 and 2.4 ppm during a three month experiment from observed time series of resistances and other variables. To do so, a machine learning model is trained against true CH4 recorded by a high precision instrument. The machine-learning model using 30% of the data for training reconstructs CH4 within the target accuracy of 0.1 ppm only if training variables are representative of conditions during the testing period. The model-derived sensitivities of the sensors resistance to H2O compared to CH4 are larger than those observed under controlled conditions, which deserves further characterization of all the factors influencing the resistance of the sensors.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3