Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments
-
Published:2018-06-20
Issue:6
Volume:11
Page:3569-3594
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Collier-Oxandale Ashley, Casey Joanna Gordon, Piedrahita Ricardo, Ortega John, Halliday HannahORCID, Johnston Jill, Hannigan Michael P.
Abstract
Abstract. Low-cost sensors have the potential to facilitate the exploration of air quality issues on new temporal and spatial scales. Here we evaluate a low-cost sensor quantification system for methane through its use in two different deployments. The first was a 1-month deployment along the Colorado Front Range and included sites near active oil and gas operations in the Denver-Julesburg basin. The second deployment was in an urban Los Angeles neighborhood, subject to complex mixtures of air pollution sources including oil operations. Given its role as a potent greenhouse gas, new low-cost methods for detecting and monitoring methane may aid in protecting human and environmental health. In this paper, we assess a number of linear calibration models used to convert raw sensor signals into ppm concentration values. We also examine different choices that can be made during calibration and data processing and explore cross sensitivities that impact this sensor type. The results illustrate the accuracy of the Figaro TGS 2600 sensor when methane is quantified from raw signals using the techniques described. The results also demonstrate the value of these tools for examining air quality trends and events on small spatial and temporal scales as well as their ability to characterize an area – highlighting their potential to provide preliminary data that can inform more targeted measurements or supplement existing monitoring networks.
Funder
National Science Foundation National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference72 articles.
1. Allen, D. T.: Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements, Curr. Opin. Chem. Eng., 5, 78–83, https://doi.org/10.1016/j.coche.2014.05.004, 2014. 2. Adgate, J. L., Goldstein, B. D., and McKenzie, L. M.: Potential public health hazards, exposures and health effects from unconventional natural gas development, Environ. Sci. Technol., 48, 8307–8320, https://doi.org/10.1021/es404621d, 2014. 3. Arfire, A., Marjovi, A., and Martinoli, A.: Mitigating slow dynamics of low-cost chemical sensors for mobile air quality monitoring sensor networks. ESWN '16 Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, Conference Proceedings, 159–167, ISBN: 978-0-9949886-0-7, 2016. 4. Bamberger, I., Stieger, J., Buchmann, N., and Eugster, W.: Spatial variability of methane: attributing atmospheric concentrations to emissions, Environ. Pollut., 190, 65–74, https://doi.org/10.1016/j.envpol.2014.03.028, 2014. 5. Biaggi-Labiosa, A., Sola, F., Lebron-Colon, M., Evans, L. J., Xu, J. C., Hunter, G., Berger, G. M., and Gonzalez, J. M.: A novel methane sensor based on porous SnO2 nanorods: room temperature to high temperature detection, Nanotechnology, 23, 45, https://doi.org/10.1088/0957-4484/23/45/455501, 2012.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|