Prediction of Solar Irradiance and Photovoltaic Solar Energy Product Based on Cloud Coverage Estimation Using Machine Learning Methods

Author:

Park SeonghaORCID,Kim YonghoORCID,Ferrier Nicola J.ORCID,Collis Scott M.,Sankaran Rajesh,Beckman Pete H.

Abstract

Cloud cover estimation from images taken by sky-facing cameras can be an important input for analyzing current weather conditions and estimating photovoltaic power generation. The constant change in position, shape, and density of clouds, however, makes the development of a robust computational method for cloud cover estimation challenging. Accurately determining the edge of clouds and hence the separation between clouds and clear sky is difficult and often impossible. Toward determining cloud cover for estimating photovoltaic output, we propose using machine learning methods for cloud segmentation. We compare several methods including a classical regression model, deep learning methods, and boosting methods that combine results from the other machine learning models. To train each of the machine learning models with various sky conditions, we supplemented the existing Singapore whole sky imaging segmentation database with hazy and overcast images collected by a camera-equipped Waggle sensor node. We found that the U-Net architecture, one of the deep neural networks we utilized, segmented cloud pixels most accurately. However, the accuracy of segmenting cloud pixels did not guarantee high accuracy of estimating solar irradiance. We confirmed that the cloud cover ratio is directly related to solar irradiance. Additionally, we confirmed that solar irradiance and solar power output are closely related; hence, by predicting solar irradiance, we can estimate solar power output. This study demonstrates that sky-facing cameras with machine learning methods can be used to estimate solar power output. This ground-based approach provides an inexpensive way to understand solar irradiance and estimate production from photovoltaic solar facilities.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3