Sky Image Classification Based on Transfer Learning Approaches

Author:

Hernández-López Ruymán1ORCID,Travieso-González Carlos M.1ORCID,Ajali-Hernández Nabil I.1ORCID

Affiliation:

1. Signals and Communications Department (DSC), Institute for Technological Development and Innovation in Communications (IDeTIC), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain

Abstract

Cloudy conditions at a local scale pose a significant challenge for forecasting renewable energy generation through photovoltaic panels. Consequently, having real-time knowledge of sky conditions becomes highly valuable. This information could inform decision-making processes in system operations, such as determining whether conditions are favorable for activating a standalone system requiring a minimum level of radiation or whether sky conditions might lead to higher energy consumption than generation during adverse cloudy conditions. This research leveraged convolutional neural networks (CNNs) and transfer learning (TL) classification techniques, testing various architectures from the EfficientNet family and two ResNet models for classifying sky images. Cross-validation methods were applied across different experiments, where the most favorable outcome was achieved with the EfficientNetV2-B1 and EfficientNetV2-B2 models boasting a mean Accuracy of 98.09%. This study underscores the efficacy of the architectures employed for sky image classification, while also highlighting the models yielding the best results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3