Laser Beam Atmospheric Propagation Modelling for Aerospace LIDAR Applications

Author:

Fahey ThomasORCID,Islam Maidul,Gardi AlessandroORCID,Sabatini RobertoORCID

Abstract

Atmospheric effects have a significant impact on the performance of airborne and space laser systems. Traditional models used to predict propagation effects rely heavily on simplified assumptions of the atmospheric properties and their interactions with laser systems. In the engineering domain, these models need to be continually improved in order to develop tools that can predict laser beam propagation with high accuracy and for a wide range of practical applications such as LIDAR (light detection and ranging), free-space optical communications, remote sensing, etc. The underlying causes of laser beam attenuation in the atmosphere are examined in this paper, with a focus on the dominant linear effects: absorption, scattering, turbulence, and non-linear thermal effects such as blooming, kinetic cooling, and bleaching. These phenomena are quantitatively analyzed, highlighting the implications of the various assumptions made in current modeling approaches. Absorption and scattering, as the dominant causes of attenuation, are generally well captured in existing models and tools, but the impacts of non-linear phenomena are typically not well described as they tend to be application specific. Atmospheric radiative transfer codes, such as MODTRAN, ARTS, etc., and the associated spectral databases, such as HITRAN, are the existing tools that implement state-of-the-art models to quantify the total propagative effects on laser systems. These tools are widely used to analyze system performance, both for design and test/evaluation purposes. However, present day atmospheric radiative transfer codes make several assumptions that reduce accuracy in favor of faster processing. In this paper, the atmospheric radiative transfer models are reviewed highlighting the associated methodologies, assumptions, and limitations. Empirical models are found to offer a robust analysis of atmospheric propagation, which is particularly well-suited for design, development, test and evaluation (DDT&E) purposes. As such, empirical, semi-empirical, and ensemble methodologies are recommended to complement and augment the existing atmospheric radiative transfer codes. There is scope to evolve the numerical codes and empirical approaches to better suit aerospace applications, where fast analysis is required over a range of slant paths, incidence angles, altitudes, and atmospheric conditions, which are not exhaustively captured in current performance assessment methods.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas-mixture IR absorption spectra denoising using deep learning;Journal of Quantitative Spectroscopy and Radiative Transfer;2024-01

2. Prediction of Rainfall in North Sumatera Using Machine Learning;2023 International Conference of Computer Science and Information Technology (ICOSNIKOM);2023-11-10

3. Machine learning methods for LIDAR measurements: review;29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics;2023-10-17

4. Atmospheric Turbulence with Kolmogorov Spectra: Software Simulation, Real-Time Reconstruction and Compensation by Means of Adaptive Optical System with Bimorph and Stacked-Actuator Deformable Mirrors;Photonics;2023-10-12

5. LiDAR technology and experimental research for comprehensive measurement of atmospheric transmittance, turbulence, and wind;Journal of Applied Remote Sensing;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3