Experimental study of laser scattering protection system for low-speed aircraft

Author:

Kim Elliott Donghyun,Park GisuORCID

Abstract

This study introduces a laser scattering system to protect a low-speed aircraft. Scattering was selected to reduce the laser’s intensity targeting the sensor of an aircraft and simultaneously maintaining the functionality of aircraft optics. Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. Experimental results regarding the decrease of the laser intensity via scattering confirmed that the theoretical and experimental values resulted in a similar decrease rate under static conditions. To validate the theoretical values, the path length, which the laser passing through water aerosols, was changed. To assess the system’s feasibility in flow conditions, a low-speed wind tunnel was employed to generate two flow speeds: 5.5 m/s and 17.6 m/s. Remarkably, the reduction of laser intensity was only affected by the path length, and was somewhat unaffected regardless of flow speed and the uniformity of the flow, only to the path length. In all cases, the initial laser intensity was set to 10 mW. Under static conditions, the intensity dropped to 8.21 mW, showing a decrease of 17.9%. In flow conditions of 5.5 m/s, 17.6 m/s, and in distorted flow, the laser intensity decreased by 18.3%, 18.1%, and 18% respectively. As a preliminary study, these results demonstrate the system’s capability to protect a low-speed aircraft targeted by lasers even under dynamic flow conditions, may suggest a possibility of providing a practical defence solution.

Funder

National Research Foundation of Korea grant funded by the Korea government

Publisher

Public Library of Science (PLoS)

Reference41 articles.

1. Applications of lasers for tactical military operations;H Kaushal;IEEE Access,2017

2. Survey and technological analysis of laser and its defense applications;SA Ahmed;Defence Technology,2021

3. Development of tactical laser weapons;Y Peigen;Jiguang Jishu (Laser Technology),1991

4. Fifty years of advances in solid-state laser materials;G Boulon;Optical Materials,2012

5. Short history of laser development;J Hecht;Optical engineering,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3