Understanding the Role of Mean and Eddy Momentum Transport in the Rapid Intensification of Hurricane Irma (2017) and Hurricane Michael (2018)

Author:

Green Alrick,Gopalakrishnan Sundararaman G.,Alaka Ghassan J.ORCID,Chiao SenORCID

Abstract

The prediction of rapid intensification (RI) in tropical cyclones (TCs) is a challenging problem. In this study, the RI process and factors contributing to it are compared for two TCs: an axis-symmetric case (Hurricane Irma, 2017) and an asymmetric case (Hurricane Michael, 2018). Both Irma and Michael became major hurricanes that made significant impacts in the United States. The Hurricane Weather Research and Forecasting (HWRF) Model was used to examine the connection between RI with forcing from the large-scale environment and the subsequent evolution of TC structure and convection. The observed large-scale environment was reasonably reproduced by HWRF forecasts. Hurricane Irma rapidly intensified in an environment with weak-to-moderate vertical wind shear (VWS), typically favorable for RI, leading to the symmetric development of vortical convective clouds in the cyclonic, vorticity-rich environment. Conversely, Hurricane Michael rapidly intensified in an environment of strong VWS, typically unfavorable for RI, leading to major asymmetries in the development of vortical convective clouds. The tangential wind momentum budget was analyzed for these two hurricanes to identify similarities and differences in the pathways to RI. Results suggest that eddy transport terms associated with convective processes positively contributed to vortex spin up in the early stages of RI and inhibited spin up in the later stages of RI in both TCs. In the early stages of RI, the mean transport terms exhibited notable differences in these TCs; they dominated the spin-up process in Irma and were of secondary importance to the spin-up process in Michael. Favorable aspects of the environment surrounding Michael appeared to aid in the RI process despite hostile VWS.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3