Effect of Metal Oxides and Smelting Dust on SO2 Conversion to SO3

Author:

Liu Haipeng,Zhang Qin,Yang Hongying,Wu Yanan,Chen Jiacheng,Hu Shen

Abstract

The purpose of this study was to investigate the effects of metal oxides and smelting dust on the formation of sulfur trioxide during copper, lead, zinc smelting process and flue. Focusing on the effects of SO2 concentration, O2 concentration, and temperature on SO2 oxidation conversion rate under homogeneous test conditions, and under various metal oxide oxidation conditions, further in dust (mainly electric dust removal ash in copper, lead, zinc smelting process), which were studied by single factor experiment test. The results showed that the effect of heterogeneous catalytic oxidation on SO2 conversion rate is much greater than that of pure gas phase oxidation. The addition of five pure metal oxides such as Fe2O3, CuO, Al2O3, ZnO, and CaO obviously promoted the SO2 conversion rate under different conditions. At different temperatures, the ability of metal oxides to promote SO2 conversion is ranked: Fe2O3 > CuO > CaO > ZnO > Al2O3. The catalytic oxidation of copper, lead, and zinc smelting dust to SO2 conversion rate was studied, and the conclusion was drawn that the metal oxides that promoted SO2 conversion rate in copper smelting dust were Fe2O3, Al2O3, ZnO, CaO, and the main substance was Fe2O3; the metal oxides that promoted SO2 conversion in zinc smelting dust were Fe2O3, Al2O3, ZnO, CaO, CuO, and the main substances were Fe2O3 and ZnO; the metal oxides that promoted SO2 conversion rate in lead smelting dust were Fe2O3. Whether metal oxides or copper, zinc, lead smelting dust in the experiment, Fe2O3 displayed the strongest catalytic oxidation capacity.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3