SO2 Mitigation via Catalytic Oxidation using Carbonaceous Materials and Metal Oxides for Environmental Sustainability

Author:

Edward Tanoko Matthew1,Weng Ying1,Lai Sin Yuan12ORCID

Affiliation:

1. School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia

2. College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China

Abstract

The high concentration of sulfur dioxide (SO2) in the air that contributes to increasing health and environmental issues has caught the attention of all countries. Numerous tactics to regulate and lower the SO2 levels in the environment that have been applied through regulations and promising technology, progress has been obtained to decrease the SO2 concentration. Among methods for SO2 removal, one of the promising techniques used is the catalytic oxidation of SO2 to SO3, which not only reduces the SO2 concentration in the environment but also produces sulfuric acid (H2SO4). Thus, the performance of the catalysts that can promote the catalytic oxidation of SO2 to SO3 for environmental sustainability is reviewed in this study. The types of catalysts evaluated in this study are carbon-based materials and metal oxides. Worth noting that these catalysts are feasible to catalytically converting SO2 hazardous material to resources, viz. SO3 and H2SO4 for industrial use. The findings of this study can serve as a foundation for devising an innovative method for SO2 mitigation through catalytic oxidation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Fundamental Research Grant Scheme

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3