Abstract
Drought is one of the most severe natural disasters. However, many of its characteristic variables have complex nonlinear relationships. Therefore, it is difficult to construct effective drought assessment models. In this study, we analyzed regional drought characteristics in China to identify their relationship with changes in meridional and zonal temperature gradients. Drought duration and severity were extracted according to standardized precipitation evapotranspiration index (SPEI) drought grades. Trends in drought duration and severity were detected by the Mann-Kendall test for the period of 1979–2019; they showed that both parameters had been steadily increasing during that time. Nevertheless, the increasing trend in drought severity was particularly significant for northwest and southwest China. A composite analysis confirmed the relationships between drought characteristics and temperature gradients. The northwest areas were relatively less affected by temperature gradients, as they are landlocked, remote from the ocean, and only slightly influenced by the land–ocean thermal contrast (LOC) and the meridional temperature gradient (MTG). The impacts of LOC and MTG on drought duration and severity were positive in the southwest region of China but negative in the northeast. As there was a strong correlation between drought duration and severity, we constructed a 2D copula function model of these parameters. The Gaussian, HuslerReiss, and Frank copula functions were the most appropriate distributions for the northeast, northwest, and southwest regions, respectively. As drought processes are highly complex, the present study explored the internal connections between drought duration and severity and their responses to meteorological conditions. In this manner, an accurate method of predicting future drought events was developed.
Funder
National Research Foundation of Korea (NRF) grant
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献