A new comprehensive approach for regional drought monitoring

Author:

Niaz Rizwan1ORCID,Almazah Mohammed M. A.23,Hussain Ijaz1ORCID,Faisal Muhammad4ORCID,Al-Rezami A. Y.56,Naser Mohammed A.2

Affiliation:

1. Department of Statistics, Quaid-i-Azam University, Islamabad, Punjab, Pakistan

2. Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil, Saudi Arabia

3. Department of Mathematics and Computer, College of Sciences, Ibb University, Ibb, Yemen

4. Faculty of Health Studies, University of Bradford, Bradford, UK

5. Department of Statistics and Information, Sana’a University, Sana’a, Yemen

6. Mathematics Department, Prince Sattam Bin Abdulaziz University, Saudi Arabia, Saudi Arabia

Abstract

The Standardized Precipitation Index (SPI) is a vital component of meteorological drought. Several researchers have been using SPI in their studies to develop new methodologies for drought assessment, monitoring, and forecasting. However, it is challenging for SPI to provide quick and comprehensive information about precipitation deficits and drought probability in a homogenous environment. This study proposes a Regional Intensive Continuous Drought Probability Monitoring System (RICDPMS) for obtaining quick and comprehensive information regarding the drought probability and the temporal evolution of the droughts at the regional level. The RICDPMS is based on Monte Carlo Feature Selection (MCFS), steady-state probabilities, and copulas functions. The MCFS is used for selecting more important stations for the analysis. The main purpose of employing MCFS in certain stations is to minimize the time and resources. The use of MCSF makes RICDPMS efficient for drought monitoring in the selected region. Further, the steady-state probabilities are used to calculate regional precipitation thresholds for selected drought intensities, and bivariate copulas are used for modeling complicated dependence structures as persisting between precipitation at varying time intervals. The RICDPMS is validated on the data collected from six meteorological locations (stations) of the northern area of Pakistan. It is observed that the RICDPMS can monitor the regional drought and provide a better quantitative way to analyze deficits with varying drought intensities in the region. Further, the RICDPMS may be used for drought monitoring and mitigation policies.

Funder

King Khalid University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3