A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions

Author:

Dębowski MarcinORCID,Michalski Ryszard,Zieliński MarcinORCID,Kazimierowicz JoannaORCID

Abstract

The priority faced by energy systems in road transport is to develop and implement clean technologies. These actions are expected to reduce emissions and slow down climate changes. An alternative in this case may be the use of biodiesel produced from microalgae. However, its production and use need to be justified economically and technologically. The main objective of this study was to determine the emissions from an engine powered by biodiesel produced from the bio-oil of Chlorella protothecoides cultured with different methods, i.e., using a pure chemical medium (BD-ABM) and a medium based on the effluents from an anaerobic reactor (BD-AAR). The results obtained were compared to the emissions from engines powered by conventional biodiesel from rapeseed oil (BD-R) and diesel from crude oil (D-CO). The use of effluents as a medium in Chlorella protothecoides culture had no significant effect on the properties of bio-oil nor the composition of FAME. In both cases, octadecatrienoic acid proved to be the major FAME (50% wt/wt), followed by oleic acid (ca. 22%) and octadecadienoic acid (over 15%). The effluents from UASB were found to significantly reduce the biomass growth rate and lipid content of the biomass. The CO2 emissions were comparable for all fuels tested and increased linearly along with an increasing engine load. The use of microalgae biodiesel resulted in a significantly lower CO emission compared to the rapeseed biofuel and contributed to lower NOx emission. Regardless of engine load tested, the HC emission was the highest in the engine powered by diesel. At low engine loads, it was significantly lower when the engine was powered by microalgae biodiesel than by rapeseed biodiesel.

Funder

Ministerstwo Edukacji i Nauki

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3