Abstract
The total energy demand in the transport sector represented 48.80% of the total consumption in Ecuador throughout 2016, where 89.87% corresponded to the road transport sector. Therefore, it is crucial to analyze the future behavior of this sector and assess the economic and environmental measures towards sustainable development. Consequently, this study analyzed: (1) the total energy demand for each vehicle class and fuel type; (2) the GHG (greenhouse gas) emissions and air pollutants NOx and PM10; and (3) the cost attributed to the fuel demand, between 2016 and 2035. For this, four alternative demand scenarios were designed: BAU: Business As Usual; EOM: Energy Optimization and Mitigation; AF: Alternative Fuels; and SM: Sustainable Mobility using Long-range Energy Alternatives Planning system. After analysis, the EOM, AF, and SM scenarios have advantages relative to BAU, where SM particularly stands out. The results show that SM compared to BAU, contributes with a 12.14% (141,226 kBOE) decrease of the total energy demand, and the economic savings for this fuel demand is of 14.22% (26,720 MUSD). Moreover, global NOx and PM10 emissions decreased by 14.91% and 13.78%, respectively. Additionally, accumulated GHG emissions decreased by 13.49% due to the improvement of the fuel quality for the vehicles that mainly consume liquefied petroleum gas, natural gas, and electricity.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference112 articles.
1. World Energy Outlook 2017,2018
2. Movilidad Sostenible-El Papel de la Electricidad y el Gas Natural en Varios Países Europeos;Álvarez,2017
3. BP Energy Outlook 2018,2019
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献