Long-Term Forecast of Energy Demand towards a Sustainable Future in Renewable Energies Focused on Geothermal Energy in Peru (2020–2050): A LEAP Model Application

Author:

De la Cruz Torres Diego G.1ORCID,Mazadiego Luis F.1ORCID,Bolonio David1ORCID,Pons-Esparver Ramón Rodríguez1ORCID

Affiliation:

1. School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003 Madrid, Spain

Abstract

The present study aims to describe the potential sources of energy in Peru with the purpose of implementing them to achieve a sustainable system, taking advantage of the natural resources in the Peruvian land. To achieve this, three alternative scenarios have been defined and analyzed using the LEAP (Long-range Energy Alternatives Planning) software [Software Version: 2020.1.112]. The scenarios are as follows: the first one, the Business-as-Usual scenario, is based on normal trends according to historical data and referencing projections made by Peruvian state entities; the second one is focused on Energy Efficiency, the highlighted characteristic is taking into consideration the efficient conditions in transmission and distribution of electric energy; and the third one, centered on Geothermal Energy, focused on the development of this type of energy source and prioritizing it. The primary purpose of this analysis is to identify the advantages and disadvantages inherent in each scenario in order to obtain the best out of each one. In this way, the intention is to propose solutions based on Peru’s national reality or possible uses of the country’s energy potential to supply its energy demand. Currently, Peru’s energy demand relies on fossil fuels, hydraulic, and thermal energy. However, there is the possibility of transforming this system into a sustainable one by strengthening existing and growing energy sources such as solar and wind energy and new technologies for hydraulic and thermal energy, in addition to considering geothermal energy as the main energy source in the third scenario. The new system mentioned satisfactorily indicates that the CO2 equivalent emissions decrease significantly in the third scenario, with a 15.8% reduction compared to the first scenario and a 9.7% reduction in comparison to the second. On the other hand, the second scenario shows a 5.6% decrease in CO2 emissions compared to the first, resulting from improvements in technology and energy efficiency without requiring significant modifications or considerable investments, as in the third scenario.

Publisher

MDPI AG

Reference54 articles.

1. United Nations (2024, January 30). What Is Climate Change?. Available online: https://www.un.org/en/climatechange/what-is-climate-change.

2. United Nations (2024, January 30). Your Guide to Climate Action: Home Energy. Available online: https://www.un.org/en/actnow/home-energy.

3. International Energy Agency (2023). Electricity Market Report Update: Outlook for 2023 and 2024, IEA.

4. British Petroleum (2024, May 25). bp Energy Outlook 2023 Edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf.

5. Corporate social responsibility for implementation of sustainable energy development in Baltic States;Streimikiene;Renew. Sustain. Energy Rev.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3