Abstract
Extensive ecosystem restoration is increasingly seen as an essential practice to mitigate climate change and protect the ecological environment. However, the indirect impact of surface vegetation improvement on the regional climate, such as the climate effect of sand-dust events reduction, has never been evaluated. Here, we estimated the feedback of temperature and precipitation on the change of sand-dust events, arising from the vegetation growth with ecological restoration, using a simple theoretical framework with a series of scenario simulations based on a regional climate model (RegCM). The results showed that revegetation reduced dust emissions, with a contribution rate of approximately 40.15%. With the combined influence of ecological restoration and climate change, the cooling effect of sand-dust events strengthened with the increase in the intensity of sand-dust events, which is mainly caused by the strong absorption of shortwave radiation by the atmosphere. The response of precipitation was uncertain because of tropospheric circulation feedback and shortwave radiation absorption. Our results also indicate that changes in sand-dust events caused by vegetation restoration play important roles in shaping the future climate near the arid and semi-arid regions of northern China. The climatic effects of sand-dust events should be included in assessing ecological restoration impacts to promote sustainable development and enhance our understanding of climate change.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
National Key Research and Development Program of China
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献