The Temporal-Spatial Variations and Potential Causes of Dust Events in Xinjiang Basin During 1960–2015

Author:

Mu Lamei,Su Jing,Mo Xinyue,Peng Nan,Xu Ying,Wang Meihua,Wang Jinyan

Abstract

Dust events not only cause local ecosystem degradation and desertification, but also have profound impacts on regional and global climate system, as well as air quality and human health. Dust events in Xinjiang Basin, as the important dust source of Eastern Asia, have undergone a significant change under the global warming background and may be in a new active period after 2000, which is worthy of study. This study provides the temporal and spatial variations of dust events in the Xinjiang Basin based on surface meteorological station observation data during 1960–2015. The results show that Southern Xinjiang is the main dust occurrence region where dust events are significantly more than that in the Northern Xinjiang, and each year more than 73% of dust events occurred in spring and summer. The dust index (DI), which is defined to represent the large-scale variation of dust event, shows a significant downward trend during the past 56 years with a linear decreasing rate −8.2 years−1 in Southern Xinjiang. The DI is positively correlated to surface wind speed with a mean correlation coefficient of 0.79. The declining trend of surface wind speed could explain dust events variation during 1960–2000. But in the new active period after 2000, the increase of DI is not consistent with the rising wind speed with the correlation coefficient decreasing to 0.34. It is found that, compared with 1960–1999, the average annual precipitation and frequency increased by 17.4 and 13% during 2000–2015, respectively, and the NDVI also increased at the same time, which indicates that the surface condition changes induced by the increase of precipitation might suppress the occurrence of dust. Moreover, the analysis of high-altitude wind field shows that the variation of the East Asian general circulation’s intensity, dominating the upper-level wind fields in the Xinjiang basin, will change the surface wind speed and precipitation, and further affect the occurrence of dust events.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference41 articles.

1. Aerosols, Cloud Microphysics, and Fractional Cloudiness;Albrecht;Science,1989

2. Assessing the Effect of EWDP on Vegetation Restoration by Remote Sensing in the Lower Reaches of Tarim River;Bao;Ecol. Indicators,2017

3. Saharan Dust Inputs and High UVR Levels Jointly Alter the Metabolic Balance of marine Oligotrophic Ecosystems;Cabrerizo;Sci. Rep.,2016

4. Ministry of Ecology and Environment: There Have Been 21 Dust Weather Events in Northern China This Year2021

5. Retrievals of Aerosol Layer Height during Dust Events over the Taklimakan and Gobi Desert;Chen;J. Quantitative Spectrosc. Radiative Transfer,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3