Machine Learning-Based Hourly Frost-Prediction System Optimized for Orchards Using Automatic Weather Station and Digital Camera Image Data

Author:

Noh Ilseok,Doh Hae-Won,Kim Soo-OckORCID,Kim Su-Hyun,Shin SeoleunORCID,Lee Seung-Jae

Abstract

Spring frosts damage crops that have weakened freezing resistance after germination. We developed a machine learning (ML)-based frost-classification model and optimized it for orchard farming environments. First, logistic regression, decision tree, random forest, and support vector machine models were trained using balanced Korea Meteorological Administration (KMA) Automated Synoptic Observing System (ASOS) frost observation data for March from the last 10 years (2008–2017). Random forest and support vector machine models showed good classification performance and were selected as the main techniques, which were optimized for orchard fields based on initial frost occurrence times. The training period was then extended to March–April for 20 years (2000–2019). Finally, the model was applied to the KMA ASOS frost observation data from March to April 2020, which were not used in the previous steps, and RGB data were extracted by digital cameras installed in an orchard in Gyeonggi-do. The developed model successfully classified 117 of 139 frost observation cases from the domestic ASOS data and 35 of 37 orchard camera observations. The assumption of the initial frost occurrence time for training helped the most in improving the frost-classification model. These results clearly indicate that the frost-classification model using ML has applicable accuracy in orchard farming.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3