Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks

Author:

Dupuy FlorianORCID,Duine Gert-JanORCID,Durand PierreORCID,Hedde ThierryORCID,Pardyjak EricORCID,Roubin Pierre

Abstract

In regions of complex topography, local flows are difficult to forecast on a routine basis, especially in stable conditions, due to the coarse resolution of operational models. The Cadarache valley (southeastern France) features this sort of complex topography. The Weather Research and Forecasting (WRF) model is run daily to forecast the weather in this region with a horizontal resolution of 3 km. Such a resolution cannot resolve all topography details of the small Cadarache valley, and therefore its local wind patterns. Other variables, however, that are less dependent on the subgrid topography, are satisfactorily forecasted, and used as inputs to an artificial neural network (ANN) designed to reproduce wind observations inside the valley from WRF forecasts. A variable selection procedure identified 5 key input variables that best drive the ANN. With respect to the WRF output, the ANN significantly improves forecasted low-level winds, both for speed and direction. This study demonstrates the potential for the ANN technique to be used as a correcting tool to forecast weather conditions at the local scale when numerical modeling is performed at a resolution too coarse to take into account the effect of local topography.

Funder

Commissariat à l'Énergie Atomique et aux Énergies Alternatives

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3