Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets

Author:

Radmilović-Radjenović Marija,Sabo Martin,Radjenović Branislav

Abstract

Electrification represents a fundamental process in planetary atmospheres, widespread in the Solar System. The atmospheres of the terrestrial planets (Venus, Earth, and Mars) range from thin to thick are rich in heavier gases and gaseous compounds, such as carbon dioxide, nitrogen, oxygen, argon, sodium, sulfur dioxide, and carbon monoxide. The Jovian planets (Jupiter, Saturn, Uranus, and Neptune) have thick atmospheres mainly composed of hydrogen and helium involving. The electrical discharge processes occur in the planetary atmospheres leading to potential hazards due to arcing on landers and rovers. Lightning does not only affect the atmospheric chemical composition but also has been involved in the origin of life in the terrestrial atmosphere. This paper is dealing with the transport parameters and the breakdown voltage curves of the gas compositions representing atmospheres of the planets of the Solar System. Ionization coefficients, electron energy distribution functions, and the mean energy of the atmospheric gas mixtures have been calculated by BOLSIG+. Transport parameters of the carbon dioxide rich atmospheric compositions are similar but differ from those of the Earth’s atmosphere. Small differences between parameters of the Solar System’s outer planets can be explained by a small abundance of their constituent gases as compared to the abundance of hydrogen. Based on the fit of the reduced effective ionization coefficient, the breakdown voltage curves for atmospheric mixtures have been plotted. It was found that the breakdown voltage curves corresponding to the atmospheres of Solar System planets follow the standard scaling law. Results of calculations satisfactorily agree with the available data from the literature. The minimal and the maximal value of the voltage required to trigger electric breakdown is obtained for the Martian and Jupiter atmospheres, respectively.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference54 articles.

1. The Mars Pathfinder Mission

2. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

3. Mission to Mars: Adaptive Identifier for the Solution of Inverse Optical Metrology Tasks

4. NASA’s Mars Rover Successfully Touches Down on the Red Planethttps://www.nbcnews.com/science/space/nasas-mars-rover-perseverance-touches-red-planet-rcna295

5. Rescued Japanese spacecraft delivers first results from Venus

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3