Electron Impact Cross Sections and Transport Studies of C3F6O

Author:

Sinha Nidhi1ORCID,Song Mi-Young1,Chang Hyonu1,Choi Heechol1,Jang Hyun-Jae2ORCID,Oh Yeon-Ho2,Song Ki-Dong2

Affiliation:

1. Division of Plasma Convergence Research, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan City 54004, Jeollabuk-do, Republic of Korea

2. Eco-Friendly Power Apparatus Research Center, Korea Electrotechnology Research Institute, 12 Jeongiui-gil, Seongsan-gu, Changwon 51543, Gyeongsangnam-do, Republic of Korea

Abstract

Electron impact scattering from C3F6O is studied in this work. The R-matrix method was used for the calculations of elastic, momentum transfer, and excitation cross sections. The attachment cross section was obtained through a parametric estimator based on the R-matrix outputs. The Binary-Encounter-Bethe (BEB) method was used for computing the ionization cross section. The obtained cross section set was used for the transport studies using the BOLSIG+ code, which is a two-term Boltzmann equation solver. The present calculation was performed for steady-state Townsend experimental conditions for E/N, covering a range of 100–1000 Td. The critical dielectric strength of pure C3F6O was found to be 475 Td, which is much greater than that of SF6 (355 Td). The effect of the addition of different buffer gases, such as CO2, N2, and O2, was also examined. For the C3F6O–CO2, C3F6O–N2, and C3F6O–O2 mixtures with 65%, 55%, and 60% C3F6O, respectively, the critical dielectric strength was determined to be essentially the same as that of pure SF6. The presence of synergism was confirmed for these gas mixtures. We further derived the Paschen curve using a fitting method with the transport parameters as the basic inputs. The minimum breakdown voltage of C3F6O accounted for only 55% of that of SF6. The buffer gas mixture improved the condition; however, the performance of CO2 and O2 mixtures was not satisfactory. The addition of N2 as the buffer gas significantly improved the breakdown property of the gas. The mixture of ≥99% of N2 or ≤1% of C3F6O gave a better breakdown characteristic than SF6. Any proportion ≥90% of N2 or ≤10% of C3F6O was suitable in the higher pressure ranges. The present work demonstrates the potential of C3F6O as a substitute gas for SF6 with a negligible environmental threat.

Funder

Korea Institute of Fusion Energy (KFE) funded by the Government funds of Republic of Korea

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3