Evaluating Hydrological Processes of the Atmosphere–Vegetation Interaction Model and MERRA-2 at Global Scale

Author:

Lv Meizhao,Xu Zhongfeng,Lv Meixia

Abstract

Hydrological processes are a key component of land surface models and link to the energy budget and carbon cycle. This study assessed the global hydrological processes of the Atmosphere–Vegetation Interaction Model (AVIM) using multiple datasets, including the Global Land Data Assimilation System (GLDAS), the University of New Hampshire and Global Runoff Data Centre (UNH-GRDC), the European Space Agency (ESA) Climate Change Initiative (CCI), the Global Land Evaporation Amsterdam Model (GLEAM), and the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) datasets. The comparisons showed that the AVIM gives a reasonable spatial pattern for surface soil moisture and surface runoff, but a less satisfactory spatial pattern for evapotranspiration. The AVIM clearly underestimates surface runoff worldwide and overestimates the surface soil moisture in the high latitudes of the Northern Hemisphere, while yielding moderately higher evapotranspiration in arid areas and lower evapotranspiration in low-latitude areas near the equator. The annual cycle of evapotranspiration in the AVIM shows good agreement with the GLEAM dataset, whereas the surface soil moisture in the AVIM has a poor annual cycle relative to the CCI dataset. The AVIM simulates a late start time for snowmelt, which leads to a two-month delay in the peak surface runoff. These results clearly point out the directions required for improvements in the AVIM, which will support future investigations of water–carbon–atmosphere interactions. In addition, the evapotranspiration in the MERRA-2 dataset had an overall good performance comparable with that of the GLEAM dataset, but its surface soil moisture did not perform well when validated against the CCI dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3