Integrating Ecosystem Services into Land-Use Modeling to Assess the Effects of Future Land-Use Strategies in Northern Ghana

Author:

Koo Hongmi,Kleemann Janina,Fürst Christine

Abstract

In West Africa, where the majority of the population relies on natural resources and rain-fed agriculture, regionally adapted agricultural land-use planning is increasingly important to cope with growing demand for land-use products and intensifying climate variability. As an approach to identify effective future land-use strategies, this study applied spatially explicit modeling that addresses the spatial connectivity between the provision of ecosystem services and agricultural land-use systems. Considering that the status of ecosystem services varies with the perception of stakeholders, local knowledge, and characteristics of a case study area, two adjoining districts in northern Ghana were integrated into an assessment process of land-use strategies. Based on agricultural land-management options that were identified together with the local stakeholders, 75 future land-use strategies as combinations of multiple agricultural practices were elaborated. Potential impacts of the developed land-use strategies on ecosystem services and land-use patterns were assessed in a modeling platform that combines Geographic Information System (GIS) and Cellular Automaton (CA) modules. Modeled results were used to identify best land-use strategies that could deliver multiple ecosystem services most effectively. Then, local perception was applied to determine the feasibility of the best land-use strategies in practice. The results presented the different extent of trade-offs and synergies between ecosystem services delivered by future land-use strategies and their different feasibility depending on the district. Apart from the fact that findings were context-specific and scale-dependent, this study revealed that the integration of different local characteristics and local perceptions to spatially explicit ecosystem service assessment is beneficial for determining locally tailored recommendations for future agricultural land-use planning.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3