MnO/ZnO:Zn Thin-Film Frequency Adaptive Heterostructure for Future Sustainable Memristive Systems

Author:

Neri-Espinoza Karen A.1ORCID,Andraca-Adame José A.1ORCID,Domínguez-Crespo Miguel A.1ORCID,Gutiérrez-Galicia Francisco1ORCID,Baca-Arroyo Roberto2ORCID,Dorantes-Rosales Héctor J.3ORCID,Peña-Sierra Ramón4ORCID

Affiliation:

1. Department of Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), Hidalgo 42162, Mexico

2. Department of Electronics, Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico

3. Department of Metallurgical and Materials Engineering, Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico

4. Department of Electrical Engineering, Sección de Electrónica de Estado Sólido (SEES), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico

Abstract

In recent years, advances in materials engineering based on adaptive electronics have found a new paradigm to optimize drawbacks in signal processing. A two-layer MnO/ZnO:Zn heterostructure envisioned for frequency adaptive electronic signal processing is synthesized by sputtering, where the use of internal states allows reconfigurability to obtain new operating modes at different frequency input signals. X-ray diffraction (XRD) analysis is performed on each layer, revealing a cubic structure for MnO and a hexagonal structure for ZnO:Zn with preferential growth in [111] and [002] directions, respectively. Scanning electron microscope (SEM) micrographs show that the surface of both materials is homogeneous and smooth. The thickness for each layer is determined to be approximately 106.3 nm for MnO, 119.3 nm for ZnO:Zn and 224.1 nm for the MnO/ZnO:Zn structure. An electrical characterisation with an oscilloscope and signal generator was carried out to obtain the time-response signals and current-voltage (I–V) curves, where no degradation is detected when changing frequencies within the range of 100 Hz to 1 MHz. An equivalent circuit is proposed to explain the effects in the interface. Measurements of switching speeds from high resistance state (HRS) to low resistance state (LRS) at approximately 17 ns, highlight the device’s rapid adaptability, and an estimated switching ratio of approximately 2 × 104 indicates its efficiency as a memristive component. Finally, the MnO/ZnO:Zn heterojunction delivers states that are stable, repeatable, and reproducible, demonstrating how the interaction of the materials can be utilised in adaptive device applications by applying frequencies and internal states to create new and innovative design schematics, thus reducing the number of components/connections in a system for future sustainable electronics.

Funder

Consejo Nacional de Humanidades, Ciencia y Tecnologías

Publisher

MDPI AG

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3