Accelerating Scientific Computing in the Post-Moore’s Era

Author:

Hamilton Kathleen E.1,Schuman Catherine D.1,Young Steven R.1,Bennink Ryan S.1,Imam Neena1,Humble Travis S.1

Affiliation:

1. Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Novel uses of graphical processing units for accelerated computation revolutionized the field of high-performance scientific computing by providing specialized workflows tailored to algorithmic requirements. As the era of Moore’s law draws to a close, many new non–von Neumann processors are emerging as potential computational accelerators, including those based on the principles of neuromorphic computing, tensor algebra, and quantum information. While development of these new processors is continuing to mature, the potential impact on accelerated computing is anticipated to be profound. We discuss how different processing models can advance computing in key scientific paradigms: machine learning and constraint satisfaction. Significantly, each of these new processor types utilizes a fundamentally different model of computation, and this raises questions about how to best use such processors in the design and implementation of applications. While many processors are being developed with a specific domain target, the ubiquity of spin-glass models and neural networks provides an avenue for multi-functional applications. This also hints at the infrastructure needed to integrate next-generation processing units into future high-performance computing systems.

Funder

Laboratory Directed Research and Development Program of Oak Ridge National Laboratory

U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research

UT-Battelle, LLC

U.S. Department of Energy

Department of Energy, Office of Science, Early Career Research Program

ASCR Testbed Pathfinder Program at Oak Ridge National Laboratory

United States Department of Defense and used resources of the Computational Research and Development Programs at Oak Ridge National Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3