Abstract
GNSS time series for static reference stations record the deformation of monitored targets. However, missing data are very common in GNSS monitoring time series because of receiver crashes, power failures, etc. In this paper, we propose a Temporal and Spatial Hankel Matrix Factorization (TSHMF) method that can simultaneously consider the temporal correlation of a single time series and the spatial correlation among different stations. Moreover, the method is verified using real-world regional 10-year period monitoring GNSS coordinate time series. The Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE) are calculated to compare the performance of TSHMF with benchmark methods, which include the time-mean, station-mean, K-nearest neighbor, and singular value decomposition methods. The results show that the TSHMF method can reduce the MAE range from 32.03% to 12.98% and the RMSE range from 21.58% to 10.36%, proving the effectiveness of the proposed method.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献