Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks

Author:

Béji Hamdi1ORCID,Kanit Toufik1,Messager Tanguy1

Affiliation:

1. Univ. Lille, ULR7512—Unité de Mécanique de Lille—Joseph Boussinesq (UML), F-59000 Lille, France

Abstract

The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity in the heterogeneous material, when the value of C is quite important (C >> 1) or quite low (C << 1), it means that the material is extremely heterogeneous, while C= 1, the material becomes totally homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s modulus of the inclusion and that of the matrix (C = EiEm), while for thermal properties, this ratio is expressed as a function of the thermal conductivity of both phases (C = λiλm). In our work, the model will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity values using a finite element method. The collected databases will be trained and tested on a deep learning model composed of a first convolutional network capable of extracting features and a second fully connected network that allows, through these parameters, the adjustment of the error between the found output and the expected one. The model was verified using a Mean Absolute Percentage Error (MAPE) loss function. The prediction results were excellent, with a prediction score between 92% and 98%, which justifies the good choice of the model parameters.

Publisher

MDPI AG

Subject

General Medicine

Reference22 articles.

1. Moumen, A.E. (2014). Prévision du Comportement des Matériaux Hétérogènes Basée sur l’Homogénéisation Numérique: Modélisation, Visualisation et Étude Morphologique. [Ph.D. Thesis, IBN Zohr University].

2. Aluminium foam—Modulus of elasticity and electrical conductivity according to percolation theory;Scr. Mater.,1998

3. Ding, Y. (2012). Analyse Morphologique de la Microstructure 3D de Réfractaires Électrofondus à Très Haute Teneur en Zircone: Relations Avec les Propriétés Mécaniques, Chimiques et le Comportement Pendant la Transformation Quadratique-Monoclinique. [Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris].

4. A homogenization technique for heat transfer in periodic granular materials;Zhou;Adv. Powder Technol.,2012

5. Chaboche, J. (1982). Mechanical Behavior of Aniotropic Solids, Springer.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3