Data-Driven, Physics-Based, or Both: Fatigue Prediction of Structural Adhesive Joints by Artificial Intelligence

Author:

Fernandes Pedro Henrique Evangelista12,Silva Giovanni Corsetti3,Pitz Diogo Berta4,Schnelle Matteo1,Koschek Katharina1ORCID,Nagel Christof1,Beber Vinicius Carrillo1ORCID

Affiliation:

1. Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany

2. Faculty 4—Production Engineering, University of Bremen, 28359 Bremen, Germany

3. Department of Mechanical Engineering, Federal University of Paraná, Curitiba 81531-980, PR, Brazil

4. Postgraduate Program of Mechanical Engineering—PGMEC, Federal University of Paraná, Curitiba 81531-980, PR, Brazil

Abstract

Here, a comparative investigation of data-driven, physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation, sensitivity to data size, and prediction accuracy is presented. Four data-driven models (DDM) are constructed using extremely randomized trees (ERT), eXtreme gradient boosting (XGB), LightGBM (LGBM) and histogram-based gradient boosting (HGB). The physics-based model (PBM) relies on the Findley’s critical plane approach. Two hybrid models (HM) were developed by combining data-driven and physics-based approaches obtained from invariant stresses (HM-I) and Findley’s stress (HM-F). A fatigue dataset of 979 data points of four structural adhesives is employed. To assess the sensitivity to data size, the dataset is split into three train/test ratios, namely 70%/30%, 50%/50%, and 30%/70%. Results revealed that DDMs are more accurate, but more sensitive to dataset size compared to the PBM. Among different regressors, the LGBM presented the best performance in terms of accuracy and generalization power. HMs increased the accuracy of predictions, whilst reducing the sensitivity to data size. The HM-I demonstrated that datasets from different sources can be utilized to improve predictions (especially with small datasets). Finally, the HM-I showed the highest accuracy with an improved sensitivity to data size.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

CAPES

Publisher

MDPI AG

Subject

General Medicine

Reference58 articles.

1. Da Silva, L.F.M., Öchsner, A., and Adams, R.D. (2011). Handbook of Adhesion Technology, Springer.

2. (2020). Circular Economy and Adhesive Bonding Technology, Fraunhofer Verlag.

3. Da Silva, L.F.M., and Öchsner, A. (2008). Modeling of Adhesively Bonded Joints, Springer.

4. Fatigue in Adhesively Bonded Joints: A Review;ISRN Mater. Sci.,2012

5. Matzenmiller, A., Kumatowski, B., Hanselka, H., Bruder, T., Schmidt, H., Mayer, B., Schneider, B., Kehlenbeck, H., Nagel, C., and Brede, M. (2012). Schwingfestigkeitsauslegung von Geklebten Stahlbauteilen des Fahrzeugbaus unter Belastung mit Variablen Amplituden: Forschung für Die Praxis P796, IGF-Nr. 307 ZN, Forschungsvereinigung Stahlanwendung e. V.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3