Fatigue life prediction of composite bolted joints based on finite element model and machine learning

Author:

Ma Shuai1,Tian Kun2,Sun Yi1,Yang Chaozhi1,Yang Zhiqiang1

Affiliation:

1. Department of Astronautic Science and Mechanics Harbin Institute of Technology Harbin China

2. Department of Mechanical Engineering National University of Singapore Singapore

Abstract

AbstractThis study proposes a fatigue life prediction method for composite bolted joints, which combines algorithm optimization‐based hybrid neural networks with finite element modeling. First, based on the Hashin failure criterion of physical mechanism, a finite element model for fatigue life prediction of composite bolted joints is established, and the simulation calculations have been conducted using various initial conditions. Then, by integrating the simulation and experiment data, we have established a fatigue life database that serves machine learning training and prediction. Finally, the data undergo a comprehensive process of deep feature extraction through the utilization of a convolutional neural network (CNN). The resulting deep features are utilized as inputs for training the backpropagation neural network (BPNN) to predict fatigue life. The results indicate this synergistic combination of CNN and BPNN results in a substantial improvement in prediction accuracy and has remarkable superiority in predicting the fatigue life of composite bolted joints.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3