Stiction and Friction of Nano- and Microtextured Liquid Silicon Rubber Surface Formed by Injection Molding

Author:

Koplin ChristofORCID,Weißer Dennis F.ORCID,Fromm Alexander,Deckert Matthias H.

Abstract

The use of cross-linking polymers such as liquid silicone rubber (LSR) can replicate serviceable surfaces with nano- and microstructures via the injection molding process. Laser ablation can be used to introduce microstructures into molding tools, while nanostructures are generated via PVD coating processes on the tools. This is why nanostructures are built using self-organized layer growth. The aim of this study was to generate evidence of direction-dependent coefficients of friction of elastomeric surfaces in dry or lubricated contact in boundary friction. Models of the dry friction of elastomeric surfaces, such as Schallamach waves or stick-slip cycles, were used to describe the friction modulation of such surfaces. Assumptions for model contacts against smooth partners, both dry and with lubrication, as well as assumptions for the interaction of structures with smooth surfaces, were investigated. It was found that for elastomer surfaces with Shore hardness 50, nanostructures are suitable for creating a direction-dependent friction increase in static and sliding friction. Friction reductions with defined microstructures are possible if their periodicity seems to interact with the wavelength of possible Schallamach waves. The choice of lubrication determines the forced wetting of the contact, but due to the structuring, there is a continuous transition to mixed friction.

Funder

Baden-Württemberg Stiftung

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3