SGN-YOLO: Detecting Wood Defects with Improved YOLOv5 Based on Semi-Global Network

Author:

Meng Wei12,Yuan Yilin12ORCID

Affiliation:

1. College of Information, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

Abstract

Object detection based on wood defects involves using bounding boxes to label defects in the surface image of the wood. This step is crucial before the transformation of wood products. Due to the small size and diverse shape of wood defects, most previous object detection models are unable to filter out critical features effectively. Consequently, they have faced challenges in generating adequate contextual information to detect defects accurately. In this paper, we proposed a YOLOv5 model based on a Semi-Global Network (SGN) to detect wood defects. Unlike previous models, firstly, a lightweight SGN is introduced in the backbone to model the global context, which can improve the accuracy and reduce the complexity of the network at the same time; the backbone is embedded with the Extended Efficient Layer Aggregation Network (E-ELAN), which continuously enhances the learning ability of the network; and finally, the Efficient Intersection and Merger (EIOU) loss is used to solve the problems of slow convergence speed and inaccurate regression results. Experimental results on public wood defect datasets demonstrated that our approach outperformed existing target detection models. The mAP value was 86.4%, a 3.1% improvement over the baseline network model, a 7.1% improvement over SSD, and a 13.6% improvement over Faster R-CNN. These results show the effectiveness of our proposed methodology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3