Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions

Author:

Aksenov Alexander V.ORCID,Polyanin Andrei D.ORCID

Abstract

This paper describes a number of simple but quite effective methods for constructing exact solutions of nonlinear partial differential equations that involve a relatively small amount of intermediate calculations. The methods employ two main ideas: (i) simple exact solutions can serve to construct more complex solutions of the equations under consideration and (ii) exact solutions of some equations can serve to construct solutions of other, more complex equations. In particular, we propose a method for constructing complex solutions from simple solutions using translation and scaling. We show that in some cases, rather complex solutions can be obtained by adding one or more terms to simpler solutions. There are situations where nonlinear superposition allows us to construct a complex composite solution using similar simple solutions. We also propose a few methods for constructing complex exact solutions to linear and nonlinear PDEs by introducing complex-valued parameters into simpler solutions. The effectiveness of the methods is illustrated by a large number of specific examples (over 30 in total). These include nonlinear heat equations, reaction–diffusion equations, wave type equations, Klein–Gordon type equations, equations of motion through porous media, hydrodynamic boundary layer equations, equations of motion of a liquid film, equations of gas dynamics, Navier–Stokes equations, and some other PDEs. Apart from exact solutions to ‘ordinary’ partial differential equations, we also describe some exact solutions to more complex nonlinear delay PDEs. Along with the unknown function at the current time, u=u(x,t), these equations contain the same function at a past time, w=u(x,t−τ), where τ>0 is the delay time. Furthermore, we look at nonlinear partial functional-differential equations of the pantograph type, which, in addition to the unknown u=u(x,t), also contain the same functions with dilated or contracted arguments, w=u(px,qt), where p and q are scaling parameters. We propose an efficient approach to construct exact solutions to such functional-differential equations. Some new exact solutions of nonlinear pantograph-type PDEs are presented. The methods and examples in this paper are presented according to the principle “from simple to complex”.

Funder

Ministry of Education and Science of the Russian Federation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference91 articles.

1. Group Analysis of Differential Equations;Ovsiannikov,1982

2. Similarity Methods for Differential Equations;Bluman,1974

3. Applications of Lie Groups to Differential Equations;Olver,2000

4. CRC Handbook of Lie Group Analysis of Differential Equations, Volume 1, Symmetries, Exact Solutions and Conservation Laws,1994

5. Applications of Group-Theoretical Methods in Hydrodynamics;Andreev,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3