Author:
Xin Tong,Yang Guolai,Xu Fengjie,Sun Quanzhao,Minak Alexandi
Abstract
The system designed to accomplish the engraving process of a rotating band projectile is called the gun engraving system. To obtain higher performance, the optimal design of the size parameters of the gun engraving system was carried out. First, a fluid–solid coupling computational model of the gun engraving system was built and validated by the gun launch experiment. Subsequently, three mathematic variable values, like performance evaluation indexes, were obtained. Second, a sensitivity analysis was performed, and four high-influence size parameters were selected as design variables. Finally, an optimization model based on the affine arithmetic was set up and solved, and then the optimized intervals of performance evaluation indexes were obtained. After the optimal design, the percent decrease of the maximum engraving resistance force ranged from 6.34% to 18.24%; the percent decrease of the maximum propellant gas temperature ranged from 1.91% to 7.45%; the percent increase of minimum pressure wave of the propellant gas ranged from 0.12% to 0.36%.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献