Tribology of rotating band and gun barrel during engraving process under quasi-static and dynamic loading

Author:

Wu Bin,Zheng Jing,Tian Qing-tao,Zou Zhi-qiang,Yu Xu-hua,Zhang Kai-shuan

Abstract

Abstract The engraving process of a projectile rotating band is one of the most basic research aspects in interior ballistics, which has not been thoroughly understood thus far. An understanding of this process is of great importance from the viewpoints of optimal design, manufacturing, use, and maintenance of gun and projectile. In this paper, the interaction of copper and nylon rotating bands with a CrNiMo gun barrel during engraving was studied under quasi-static and dynamic loading conditions. The quasi-static engraving tests were performed on a CSS-88500 electronic universal testing machine (EUTM) and a special gas-gun-based test rig was designed for dynamic impact engraving of the rotating bands. The mechanical behaviors of copper and nylon were investigated under strain rates of 10−3 s−1 and 2 × 103 s−1 using an MTS 810 and a split Hopkinson pressure bar (SHPB), respectively. Morphologies of the worn surfaces and cross-sectional microstructures were observed with scanning electron microscope (SEM) and optical microscope (OM). It was found that large deformation and severe friction occur during engraving. The surface layer is condensed and correlated with a hardness gradient along the depth from the top worn surface. The structure of the rotating band and gun bore, band material, and loading rate have great effects on band engraving. The flow stress-strain of the copper strongly depends on the applied strain rate. It is suggested that strain rate and temperature play significant roles in the deformation mechanism of rotating bands.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3