Simulation Study on the Impact Response of Barrels with Different Rifling Profiles during Bullet Engraving

Author:

Wei Zhifang1ORCID,Cheng Yangyang2ORCID,Wang Zhiwei3ORCID,Lin Yanpeng4ORCID

Affiliation:

1. College of Mechatronics Engineering, North University of China, No. 3, Xueyuan Road, Taiyuan, Shanxi, China

2. School of Control Science and Engineering, Shandong University, Jingshi Road, 250061 Jinan, China

3. No. 208 Institute of China Ordnance Industry, Beijing 102202, China

4. Chongqing Changan Industry (Group) Co. Ltd., No. 599, Konggang Road, Yubeiqu, Chongqing, China

Abstract

Gun barrel bores are prone to ablative damage and stress concentration under high temperatures, pressures, and dynamic load impacts during bullet engraving, which may result in barrel failure. A dynamic stress analysis during bullet engraving is a prerequisite for barrel life analysis and design. Impact responses during bullet engraving were investigated in this study for rifled barrels with different cross-sectional profiles to improve the match between the dynamic performances of the gun barrel and bullet and effectively extend the barrel service life. First, feature suppression by expression based on a uniform parametrized template was used to perform parametric modeling of a gun barrel with rectangular, trapezoidal, multiarc, and multilateral-arc rifling profiles. Second, theoretical models were constructed considering different rifling structures: a model to calculate the chamber pressure, a model for heat transfer in the barrel during continuous firing, and a model to calculate the friction between a bullet and the barrel wall surface based on shear-slip friction theory. These models were integrated into a simulation, where the ABAQUS (ABAQUS. 6.14.1-4. 2014. DASSAULT SIMULIA.)/Explicit software was used to build a finite element model of the barrel dynamic stress under heat-force-friction coupling during bullet engraving. Finally, the dynamic response stresses were analyzed for bullet engraving into four barrels with different rifling profiles. All four types of barrels developed considerable stress at the junction between the forcing cone and the rifled bone under the same impact load. The stress values of the multiarc and multilateral-arc rifling were far below that for the rectangular and trapezoidal rifling. Thus, the barrels with multiarc and multilateral-arc rifling profiles had a higher impact resistance than the other two barrel types.

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3