Abstract
Recently, the highly efficient production of value-added biobased chemicals from available, inexpensive, and renewable biomass has gained more and more attention in a sustainable catalytic process. Furfural is a versatile biobased chemical, which has been widely used for making solvents, lubricants, inks, adhesives, antacids, polymers, plastics, fuels, fragrances, flavors, fungicides, fertilizers, nematicides, agrochemicals, and pharmaceuticals. In this work, ultrasonic-treated chestnut shell waste (UTS-CSW) was utilized as biobased support to prepare biomass-based heterogeneous catalyst (CSUTS-CSW) for transforming waste lignocellulosic materials into furfural. The pore and surface properties of CSUTS-CSW were characterized with BET, SEM, XRD, and FT-IR. In toluene–water (2:1, v:v; pH 1.0), CSUTS-CSW (3.6 wt%) converted corncob into furfural yield in the yield of 68.7% at 180 °C in 15 min. CSUTS-CSW had high activity and thermostability, which could be recycled and reused for seven batches. From first to seventh, the yields were obtained from 68.7 to 47.5%. Clearly, this biobased solid acid CSUTS-CSW could be used for the sustainable conversion of waste biomasses into furfural, which had potential application in future.
Funder
the Postgraduate Research & Practical Innovation Program of Jiangsu Province
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering