Increasing furfural production from xylose and directly obtaining it from corn residues using Preyssler heteropolyacid

Author:

Pardo Cuervo Oscar H.ORCID,Gonzalez Cristian F.,Rojas Hugo A.,Martínez José J.,Romanelli Gustavo P.,Peixoto Andreia F.

Abstract

AbstractLignocellulosic biomass is considered a sustainable source for the production of biofuels and platform molecules such as furfural (FAL). In this study, a series of solids with different acidity were tested for the production of FAL from xylose and corn residues. Functionalized Cloisite Na+ (CLOI-SO3H) and Preyssler heteropolyacid (HPA-Preyssler) showed the best catalytic performance in the production of FAL form xylose. Under optimal reaction conditions, the HPA-Preyssler catalyst achieved a maximum yield of 75% in just 15 min and maintained its activity for 5 consecutive reaction cycles, while the CLOI-SO3H catalyst obtained a 97% yield in 15 min, but its activity decreased considerably during reuse. Using techniques such as FTIR, SEM, EDS, and TGA, the possible causes of the decrease in the activity of the catalysts were established. The cellulose, hemicellulose, and lignin contents of different corn residues were determined to determine the most appropriate for the production of FAL. Using the HPA-Preyssler, the temperature and amount of catalyst selected for the dehydration of xylose to FAL, the appropriate time, amount of substrate, and type of solvent were established to obtain FAL directly from yellow corn stalks, reaching a maximum yield of 14% concerning hemicellulose content in 3 h at 180 °C in DMSO without performing any pretreatment to the corn residues, and the catalyst was recovered for subsequent reactions. Therefore, using the HPA-Preyssler catalyst is a new alternative for efficiently converting xylose or residual lignocellulosic biomass into FAL.

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3