Analysis for Ground Deformation Induced by Undercrossed Shield Tunnels at a Small Proximity Based on Equivalent Layer Method

Author:

Liang JiaxinORCID,Tang Xiaowu,Wang Tianqi,Lin Weikang,Yan Jing,Fu Chunqing

Abstract

Shield excavation and tail grouting are the main causes of ground deformation in tunnel construction, especially in the case of new tunnels undercrossing existing tunnels, which have stricter requirements for settlement control. This paper investigates the equivalent layer method, which is used to simulate ground deformation induced by shield construction and tail grouting via numerical analysis. The research is based on a case study of Beijing’s newly built Metro Line 12 undercrossing the existing Metro Line 10, which is constructed in soft soil. Three-dimensional finite simulation via Plaxis 3D is performed, incorporating the equivalent layer method. Parametric analysis is carried out to explore the influence of the thickness (δ) and elastic modulus (E) of the equivalent layer on surface settlement. It is shown that the surface settlement increases almost linearly with the increase in δ, and it is insensitive to changes in E. The δ is the dominating factor affecting the surface settlement. Based on the Beijing Metro Lines project, the predicted surface settlement is analyzed and compared with monitoring data. Based on a case study of Beijing Metro, the applicability of the equivalent layer method is verified, and the empirical values for δ and E are summarized. δ = 1.8 Gp and E = 2 MPa are suitable values for analysis, which could be references for other shield tunnel constructions in soft soil. With the obtained empirical values of the equivalent layer method, the deformation caused by grouting and undercrossing tunnels could be accurately predicted, which is benefit for reducing budget and environmental protection.

Funder

Zhejiang Natural Science Foundation Committee

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3