Abstract
The effects of different types of phosphate fertilization on the phosphorus (P) adsorption-desorption in low-P red soil remain unclear. A field plot location test was carried out, and fifteen red soil samples were collected at depths of 0–20 cm from five phosphate fertilizers (CK—no-phosphate, SSP—single superphosphate, CMP—calcium magnesium phosphate, MAP—monoammonium phosphate, and DAP—diammonium phosphate) after the maize was harvested to evaluate the soil physicochemical properties, P adsorption, and desorption characteristics. The structural equation model (SEM) and adjacent tree method (ABT) were used to quantitatively analyze the relative contribution of P adsorption and desorption. The yield, P accumulation, and the P use efficiency of maize were the highest under SSP and CMP treatments. The P adsorption amount was CK > DAP > MAP > CMP > SSP, and the P desorption amount was DAP > MAP > CMP > SSP > CK. Compared with the CK treatment, P adsorption of other P treatments reduced by an average of 21.4%, while P desorption increased by 154.8%. The effect of different types of phosphate fertilizers on soil P adsorption was mainly through regulation of soil organic matter (SOM) and Olsen P, and the effect on soil P desorption was mainly through regulation of SOM and CaCO3. Al2O3 had the greatest effect on P adsorption with a relative contribution rate of 31.52%, and SOM had the greatest effect on P desorption with a relative contribution rate of 53.04%. SSP and CMP treatments had an optimal matching with acidic red soil, which can promote P adsorption, effectively slow down P loss, improve P utilization, and increase crop yield.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献