Abstract
Measurements of ammonia with inexpensive and reliable sensors are necessary to obtain information about e.g., ammonia emissions. The concentration information is needed for mitigation technologies and documentation of existing technologies in agriculture. A flow-based fluorescence sensor to measure ammonia gas was developed. The automated sensor is robust, flexible and made from inexpensive components. Ammonia is transferred to water in a miniaturized scrubber with high transfer efficiency (>99%) and reacts with o-phthalaldehyde and sulfite (pH 11) to form a fluorescent adduct, which is detected with a photodiode. Laboratory calibrations with standard gas show good linearity over a dynamic range from 0.03 to 14 ppm, and the detection limit of the analyzer based on three-times the standard deviation of blank noise was approximately 10 ppb. The sampling frequency is 0.1 to 10 s, which can easily be changed through serial commands along with UV LED current and filter length. Parallel measurements with a cavity ring-down spectroscopy analyzer in a pig house show good agreement (R2 = 0.99). The fluorescence sensor has the potential to provide ammonia gas measurements in an agricultural environment with high time resolution and linearity over a broad range of concentrations.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献