Synergetic formation of secondary inorganic and organic aerosol: effect of SO<sub>2</sub> and NH<sub>3</sub> on particle formation and growth

Author:

Chu BiwuORCID,Zhang Xiao,Liu YongchunORCID,He Hong,Sun YeleORCID,Jiang Jingkun,Li Junhua,Hao Jiming

Abstract

Abstract. The effects of SO2 and NH3 on secondary organic aerosol formation have rarely been investigated together, while the interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain. Here we studied the effects of SO2 and NH3 on secondary aerosol formation in the photooxidation system of toluene∕NOx in the presence or absence of Al2O3 seed aerosols in a 2 m3 smog chamber. The presence of SO2 increased new particle formation and particle growth significantly, regardless of whether NH3 was present. Sulfate, organic aerosol, nitrate, and ammonium were all found to increase linearly with increasing SO2 concentrations. The increases in these four species were more obvious under NH3-rich conditions, and the generation of nitrate, ammonium, and organic aerosol increased more significantly than sulfate with respect to SO2 concentration, while sulfate was the most sensitive species under NH3-poor conditions. The synergistic effects between SO2 and NH3 in the heterogeneous process contributed greatly to secondary aerosol formation. Specifically, the generation of NH4NO3 was found to be highly dependent on the surface area concentration of suspended particles, and increased most significantly with SO2 concentration among the four species under NH3-rich conditions. Meanwhile, the absorbed NH3 might provide a liquid surface layer for the absorption and subsequent reaction of SO2 and organic products and, therefore, enhance sulfate and secondary organic aerosol (SOA) formation. This effect mainly occurred in the heterogeneous process and resulted in a significantly higher growth rate of seed aerosols compared to without NH3. By applying positive matrix factorisation (PMF) analysis to the AMS data, two factors were identified for the generated SOA. One factor, assigned to less-oxidised organic aerosol and some oligomers, increased with increasing SO2 under NH3-poor conditions, mainly due to the well-known acid catalytic effect of the acid products on SOA formation in the heterogeneous process. The other factor, assigned to the highly oxidised organic component and some nitrogen-containing organics (NOC), increased with SO2 under a NH3-rich environment, with NOC (organonitrates and NOC with reduced N) contributing most of the increase.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3