Author:
Thi-Bich Mac,Van-Chien Dinh,Tien-Long Banh,Duc-Toan Nguyen
Abstract
This paper investigates cutting force in thermal-assisted machining (TAM) by induction heating for SKD11 tool steel which is widely used in the mold industry. Experimental studies were first conducted at room and elevated temperatures to evaluate the effectiveness of the heating process on chip morphology and the cutting forces during the thermal-assisted machining and comparing with conventional machining method. The Taguchi method based on orthogonal array and analysis of variance ANOVA method was then used to design the number of experiments and evaluate the influence of cutting speed, feed rate, cutting depth, and elevated temperature on the cutting force. Study results showed a decrease in the cutting force in the TAM process. The optimal condition of parameters obtained for thermal-assisted machining were cutting speed 280 m/min, feed rate 230 mm/min, cutting depth 0.5 mm and temperature 400 °C. Finally, a proposed equation was established to determine the cutting force that was presented as a function of elevated temperatures when milling SKD11 material. A proposed cutting force model was compared, evaluated and confirmed to be in good agreement with experimental results.
Funder
National Foundation for Science and Technology Development
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献