Improved Moth Flame Optimization Approach for Parameter Estimation of Induction Motor

Author:

Danin Zekharya,Sharma AbhishekORCID,Averbukh MosheORCID,Meher ArabindaORCID

Abstract

The effective deployment of electrical energy has received attention because of its environmental implications. On the other hand, induction motors are the primary equipment used in many industries. Industrial facilities demand the maximum percentage of energy. This energy demand is determined by the operating circumstances imposed by the internal characteristics of the induction motor. Because internal parameters of an induction motor are not immediately measurable, they must be obtained through an identification process. This paper proposed an improved version of moth flame optimization (IMFO) for the efficient parameter estimation of induction motors. A steady-state equivalent circuit of the induction motor is employed for the simulation. The proposed technique handles the parameter estimation problem better than moth flame optimization (MFO), particle swarm optimization (PSO), the flower pollination algorithm (FPA), the tunicate swarm algorithm (TSA), and the sine cosine algorithm (SCA). The anticipated IMFO reduces the cost function by 49.38% as compared with the basic version of MFO.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference32 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3